The DARPA 100Gb/s RF Backbone Program

Dr. Ted Woodward
Program Manager, DARPA/STO

Briefing Prepared for NSF mmW RCN workshop
Madison, WI

19 July 2017
Objective: Capacity AND Mobility
• Fiber-like capacity with RF-like mobility
• Work in clouds, rain, and fog
• Size, weight, and power (SWaP) suitable for high-altitude (e.g. 60,000 ft.) platforms

Applications
• High capacity backbone (fiber extension, aggregation)
• High rate data transport
• 0.5 degree beam width permits spectral re-use
• Range ~100km air to ground, ~200km air to air

GOAL: High Capacity and Robust Mobility

Fiber
100 Gb/s per wavelength
100 wavelengths

Mobile SATCOM
Terrestrial Radio
Typical ~Mb/s
Best (roadmap): 9 Gb/s

High
Low
Fixed
On-the-move

100 Gb/s, ~200 km
100 Gb/s, ~100 km

BW = Bandwidth
Approved for Public Release, Distribution Unlimited
DARPA Phase 1
Tech Building Blks
Sept ‘13 - Apr ‘15

DARPA Phase 2
System Design / Integration
Oct’15 – Dec ‘17

DARPA Phase 3
Flight Testing
Jan’18 - Sep ‘18

 Demo Building Blocks
- Rate: 50 Gbps modem
 (25 Gbps * 2 polarizations)
- Range: 10 km
- Line of sight MIMO: 4 streams x 1 Gb/s
- Range: 20, 35 km

Technology Integration
- Rate: 100 Gbps (25 Gbps * 2 pol * 2 antennas)
- Range: 50 km Air-to-Ground
- Pointing, Acquisition, Tracking
- Phase 3 Flight Demo Planning
- Terrestrial Testing (Mountain to Ground Demo)

Flight Testing
- Rate: 100 Gb/s downlink, 10 Gb/s uplink
- Range: 100 km
- Demonstration aircraft
- PAT Validation

Phase 2 & 3 demonstrations are focused on operational transition

Approved for Public Release, Distribution Unlimited
Application spaces

Backbone Relay
- Fiber POP
- Wireless region
- 100G RF node(s)

Backhaul / Aggregator
- Fiber POP
- Multiple nodes

High Capacity Data Movement
- Single node
- Database

Local Relay
- Multiple nodes
- Interconnected network

Approved for Public Release, Distribution Unlimited
Technical Approach: Dimensions of Capacity

How we get 100 Gb/s
5 x 5 x 2 x 2 =
25 Gb/s x 4 strms = 100 Gb/s

\[C \approx N_s N_p B \log_2(1 + SNR) \]

<table>
<thead>
<tr>
<th>B: Bandwidth</th>
<th>SNR (higher order modulation)</th>
<th>Np: Polarization</th>
<th>Ns: Spatial Combining</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 GHz</td>
<td>5 bits / sec / Hz</td>
<td>2 Polarizations</td>
<td>2 Separate Antennas</td>
</tr>
</tbody>
</table>

Millimeter Wave Bandwidth (B), (5 GHz)

- C ~ B
- 5 GHz in mmW
- Best balance of capacity & loss

SNR (Higher Order Modulation (x5))

- C ~ log₂ (SNR)
- Maximize information bits / symbol
- Limited by linearity and power

<table>
<thead>
<tr>
<th>States</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>bits</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Polarization Multiplexing (x2)

- C ~ Np
- 2 polarizations doubles data rate in same bandwidth
Phase 1 Accomplishments: High Order Modulation

- World record RF modulation rate and order over distance

![Phase 1 Link over downtown Los Angeles (19 km)](image1)

- Northrop Grumman’s Indium Phosphide (InP) modulator (3W)
- Raytheon’s efficient axially displaced ellipse adaptive focus antenna

- Objective: 5 GHz BW, 64 phase states, 2 polarizations
- Threshold: Battelle 30 Gb/s, Northrop Grumman 57 Gb/s, Raytheon 28 Gb/s

- Distance (km):
 - 0, 5, 10, 15, 20
 - Total Data Rate (Gb/s):
 - 0, 10, 20, 30, 40, 50, 60, 70
Phase 1 Accomplishments: Spatial Multiplexing

- Longest demonstrations of mmW line-of-sight multiple-input / multiple output (MIMO) link

\[R_{Rayl} = \frac{d_1 d_2 N_R}{\lambda} \]

Goal

Typical d1, d2: 3 – 20 meters

R: 20, 35 km

TX Ant

RX Ant

R/ R_{Rayl} : Rayleigh Range Multiple

Silvus

4x

ACS

5.4x

Applied Communication Sciences (ACS)
New Jersey test range (2 antennas)

Silvus Los Angeles test range (2 or 4 antennas)
Phase 2 Overview: Putting It Together

Phase 2 Approach and Status

- Build integrated system using Phase 1* tech.
- Final design review complete; System integration ongoing; Ground tests this year

System technologies from Phase 1

- Single stream high rate radios (25 Gb/s)
- Multiple input / multiple output (MIMO) signal processing combines 4 streams

New in phase 2: Addressing mobility

- 18”–24” efficient adaptive focus dish antennas
- Pointing, acquisition, and tracking
- Ground adaptive antenna selection
- High power GaN power amplifier

SWaP budget (air, single data link)

- 1500 W / 200 lbs (approx. 400 W per transceiver)

*Northrop Grumman (lead), Raytheon, Silvus Technologies, Scaled Composites

Approved for Public Release, Distribution Unlimited
Testing and V/W Channel Measurements

Channel characterization essential to system design
- 4 months of terrestrial testing at 19 km and 44 km

Channel attenuation results
- Good correlation between ITU models and measurement
- Fog has little impact on link
- “Moderate” rain can cause high link attenuation

Scintillation models do not exist at these frequencies
- Measured markedly deeper fades at 44 km range vs. 19 km

Low elevation angle (1.5°) increases fades and more stressing than air-to-ground operation (>9°)

Atmospheric Attenuation @ 19 km

Testing Locations
- Northrop Grumman
- Mt. Lukens
- Westwood
- Weather Station
Capstone Test: 100G Airborne testing

60,000 feet

Phase 3:
- 100 km air-to-ground test

1. Adaptive Modulation (Ground/Air)
2. Antenna Switching
3. Adaptive Antenna and Pointing, Acquisition, and Tracking
Millimeter wave relieves spectral congestion through increased bandwidth allocations at the expense of increased rain loss and therefore availability.

Available Bandwidth

<table>
<thead>
<tr>
<th>BE-CDL Band Designator</th>
<th>Ku2</th>
<th>V1</th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>Frequency</td>
<td>Bandwidth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.4-17.3</td>
<td>1.9 GHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43.5-47.0</td>
<td>3.5 GHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66.0-76.0</td>
<td>10 GHz</td>
<td></td>
</tr>
</tbody>
</table>

Rain Loss vs Availability

<table>
<thead>
<tr>
<th>Availability</th>
<th>Ku2</th>
<th>V1</th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>4</td>
<td>30</td>
<td>52</td>
</tr>
<tr>
<td>97%</td>
<td>2</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>95%</td>
<td>1</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>92%</td>
<td>0.3</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Assumptions:
- Altitude: 60,000 feet
- Elevation Angle: 10 degrees
- Range: ~100 km
- Crane Region D2 (Wash, DC)

Significant increase in V/W Rain Loss for Availability > 95%
Air-to-Air Link, Rate vs Range (18” Apertures)

- Single polarization supports data rates of 25 Gbps at 360 Nmi
- Dual polarization antenna doubles data rate (50 Gbps @ 360 Nmi)
- Adding 2nd antenna for MIMO doubles peak data rate (100Gbps @ 150 Nmi)

Full 4x4 MIMO system can operate on any curve based on mission needs

Assumptions (in line with 100G design):
- Antenna Diameter: 18 inch
- Transmit Power: 40 Watt Psat
- Altitude: 60,000 feet
- Antenna Separation: 10 meter perpendicular to line of sight
- MIMO performance dependent on aircraft geometries

MIMO Enables x2 Data Rate for Bandwidth Constrained Systems

Approved for Public Release, Distribution Unlimited
Air-to-Ground Link Availability

- Millimeter wave relieves spectral congestion through increased bandwidth allocations at the expense of increased rain loss and therefore availability

100 km Target (54 Nmi)
(~90% availability for 100 Gbps)

Assumptions:
- Air-to-Ground Link
- Altitude: 60,000 feet
- Elevation Angle: 10 degrees
- Air Antenna Diameter: 18 inch
- Ground Antenna Diameter: 24 inch
- Crane Region D2 (Wash, DC)

~90% Availability for 100 Gbps, 100 km Air-to-Ground Link (for Crane Region D2)
100G “Firsts” -- Pushing State of the Art

<table>
<thead>
<tr>
<th>“First”</th>
<th>Uniqueness</th>
</tr>
</thead>
</table>
| 100 Gbps within 5 GHz Bandwidth | • Extremely high spectral efficiency (20 b/s/Hz) over 5 GHz instantaneous bandwidth
 | • Commercial RF and optical systems typically < 5 b/s/Hz |
| 25 Gbps Modem | • Extremely high rate, high iteration channel decoding using strong low density parity check (LDPC) code |
| InP Single Chip Modulator | • World record direct Digital-to-RF Conversion modulator (>30 Gbps)
 | • 256-APSK, up to 11 GHz symbol rates at low distortion (EVM < 5%) |
| High Rate Line-of-Sight MIMO | • Traditional MIMO relies on multi-path propagation effects and is data rate limited.
 | • Computationally efficient, high-rate line of sight MIMO |
| High efficiency E-band Antenna | • >75% aperture efficient high gain mmW antennas with adjustable beamwidth
 | • Less than 0.002” RMS surface accuracy on 18” and 24” shaped Axial-Displaced Ellipse reflector antenna |
| E-band Power Amplifier | • 10 – 20 dBW E-band power amplifier technology leveraging DARPA investments in Gallium Nitride materials and circuits |
| Airborne PAT | • High gain (<0.4° HPBW) antennas required advanced mobile mmW Pointing,
 | Acquisition, and Tracking system for air-to-ground and air-to-air links |
| V/W Band Channel | • High scintillation and deep fades require adaptive coding and modulation at < 100 ms rates vs. seconds to minutes in conventional systems |

Number of World First Required for an Operational 100G System
Conclusion

• DARPA 100G
 • Demonstrating fiber-like capacity with RF mobility
 • Exploiting and gaining understanding of all dimensions of channel capacity
 • Design can be adapted to different needs

• Status: System integration is underway
 • Underlying technologies demonstrated
 • Integrated 100 Gb/s design using four spatial streams at 25 Gb/s each is complete and being realized
 • Over-the-air outdoor system testing planned for this year
 • Airborne mobile demonstrations planned in 2018
 • Deployed systems adaptable to different platforms, payloads, and uses
Thank You